KIPUS - Retrofitting Optimization Tools

Carlos Torres Fuchslocher, Dr. Executive Director Kipus ctorres@kipus.cl September 2016

What is Kipus?

ENERGY INVESTMENT OPTIMIZATION

Research context

- Energymon: Development of wireless sensor network based Decision Support System to monitor building energy performance. IEEE, 2011, P. Szems et al. (MFKK Inv. and Research Centre Hungary).
- A multi-objective approach for optimal prioritization of energy efficiency measures in buildings: Model, software and case studies. M. Karmellos et al. 2015. Edinburgh, Athens

- Energy Audit Tool Overview, CBEI, 2013, R. Leicht, et al. Inverse modeling using previous data, estimates building parameters.
- Hybrid approach to energy modeling. LBNL, DOE, 2014–2016. Hong, T. It combines physics & measured data. New feature for EnergyPlus V8.6

Problem statement

CBEI, 2013

Problem statement

CBEI, 2013

Problem statement

Figure 2: Installation costs and yearly savings for ECM packages proposed by Companies A, B, and C.

www.kipus.cl

Problem statement

Building energy modelling:

- "A ±30% proposition at best...
- ...Not accurate enough to support investment...
- ...Can't predict energy use..."

Source: U.S. DOE

Our approach

A tool that:

- serves for a <u>cost-effective</u> retrofitting <u>assessment</u> and supports <u>continuous</u> investment decision-making.
- uses data from <u>sensors</u> to sink <u>audit costs</u> and to improve the <u>accuracy</u> of building energy assessment.
- · allows continuous modeling for continuous improvement

The tool uses an <u>inverse optimization algorithm</u> that:

- approximates the thermodynamical behavior by means of a linear function (linear factors)
- uses parameters and geometry obtained onsite or from drawings
- determines the <u>best factors</u> for building modeling
- uses proxy variables (CO₂, person counter, humidity, etc.) for estimating hard to read variables e.g. ventilation and infiltration.

-Continuos accurate assessment

Our approach

The algorithm

Heating and cooling energy depends on:

- building parameters B (input)
- weather W (measured)
- user behavior U (measured)

$$I = B \cup W \cup U$$
.

$$Q_{z,t} = Q_{z,t}^{ ext{Trans}} + Q_{z,t}^{ ext{Vent}} + Q_{z,t}^{ ext{Rad}} - Q_{z,t}^{ ext{Sol}} - Q_{z,t}^{ ext{Int}} + Q_{z,t}^{ ext{Losses}} \qquad [W \| t \|],$$

The algorithm

$$Q_{z,t}^{\text{\tiny Trans}} = \beta_z^1 \times \sum_{i \in B_z} A_i \times U_i \times Fx_i \times \Delta T_i \times ||t||,$$

$$Q_{z,t}^{\text{\tiny Vent}} = \beta_z^2 \times \frac{1}{\text{\tiny CO}_{2_z}} \times \frac{1}{p_z^{\text{\tiny int}}} \times n_{z,t}^{\text{\tiny pers}} \times V_z \times 0.34 \times \Delta T_z^{\text{\tiny vent}} \times \|t\|,$$

$$Q_{z,t}^{\scriptscriptstyle \mathrm{Sol}} = \sum_{j \in J} \beta_{j_z}^6 \times A_{j_z}' \times I^h \times \|t\|.$$

$$Q_{z,t}^{\text{\tiny Int}} = \left(\beta_z^3 \times n_{z,t}^{\text{pers}} + \beta_z^4 \times Q_z^{\text{il}} + \beta_z^5 \times Q_z^{\text{eq}}\right) \times ||t||.$$

$$Q_{z,t}^{\text{\tiny Losses}} = \beta_z^9 \times ||t||.$$

www.kipus.cl

The algorithm

The accuracy of a given configuration of such factors is assessed:

$$\epsilon_1(\boldsymbol{\beta}') = \frac{\left| \sum_{t=1}^{M} \sum_{z=1}^{Z} Q'_{z,t} - \sum_{t=1}^{M} \sum_{z=1}^{Z} Q_{z,t} \right|}{\sum_{t=1}^{M} \sum_{z=1}^{Z} Q_{z,t}},$$

Relative error: energy consumption forecast using a particular factor setting 6' and measured energy cosumption

$$\epsilon_2(\boldsymbol{\beta}') = \sum_{z=1}^{Z} \frac{Q_z}{Q} \sum_{t=1}^{M} \left(\frac{\left| Q'_{z,t} - Q_{z,t} \right|}{Q_{z,t}} \right)$$

Relative error per zone

A particular vector θ' might induce a very small error $\varepsilon 1(\theta')$ but a high error $\varepsilon 2(\theta')$, or vice-versa. The goal of the algorithm is to find a vector $\theta*$ that provides a good balance between $\varepsilon 1(\theta*)$ and $\varepsilon 2(\theta*)$.

Preliminary results

- 106 multipliers combinations
- 10⁵ multipliers combinations for each zone
- Less than two hours computation
- Algorithm tested first using building modeling software TAS, less than 1% deviation
- Algorithm being tested in a building

Preliminary results (comparison with TAS)

Case Study

Preliminary results (Real)

Preliminary results (Real)

Zigbee mesh overview

Communication protocols

Communication protocols

Communication protocols

KIPUS - Retrofitting Optimization Tools

Carlos Torres Fuchslocher, Dr. Executive Director Kipus ctorres@kipus.cl September 2016